


Preface

This book is a collection of exercises in quantitative finance for graduate

students in financial markets. After the notations have been introduced and

the relevant continuous-time models have been discussed, four main topics

are addressed. The first section proposes problems based on one-period mar-

kets, where the focus is on the determination of no-arbitrage prices for claims

that provide given payoff profiles in complete or incomplete markets. Within

the same discrete-time framework, the second section aims at fostering the

understanding of optimal mean-variance portfolio choices and the related un-

constrained or constrained optimization techniques. The third section relies

instead on the continuous-time Black-Scholes representation of financial mar-

kets in the presence of market risk. The exercises concern the determination

of the equilibrium return and the no-arbitrage price of instruments exposed

to such a risk via their payoffs. The fourth section deals with the continuous-

time Vasicek model of interest rate risk. The exercises focus on the financial

features of the no-arbitrage pricing formula of zero-coupon bonds and on the

equilibrium term structure of interest rates.
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Notations





Notations for one-period financial markets

(Sections 1 and 2)

Timing Investors face two trading dates only, namely t = 0 and t = 1. At

time t = 0, investors choose their investment strategy, investing in N+1 non-

dividend-paying securities, for which we use the index j, with j = 0, . . . , N .

At time t = 1 they receive the liquidation value of their strategy.

Riskless security The security with j = 0 represents a riskless security.

B(0) ≡ 1 denotes the time-0 price of the riskless security. B(1) ≡ 1 + r

denotes its time-1 price. The quantity r is the risk-free return, with r ≥ 0.

Risky securities For the N securities with j > 0, Sj(0) denotes their

time-0 price. S̃j(1) is a random variable that denotes their time-1 price, with

j = 1, . . . , N .

Uncertainty By time 1, the market uncertainty will resolve in one of K

possible states of the world. ωk indicates the generic k-th state of the world

at time 1. The ωk’s are relevant economic/financial scenarios. Ω indicates

the set of all states of the world, i.e. Ω = {ω1, . . . , ωK}. Sj(1)(ωk) indicates

the time-1 price of the j-th security in scenario ωk.

Payoff matrix The payoff matrix M has K + 1 rows and N + 1 columns.

Each column j of M represents the time-0 cashflows from buying (row 1) or

the time-1 cashflows from having bought (the other rows) 1 unit of the j-th
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security (j = 0, 1, ..., N):

M ≡



−1 −S1(0) −S2(0) · · · −SN (0)

1 + r S1(1)(ω1) S2(1)(ω1) · · · SN (1)(ω1)

1 + r S1(1)(ω2) S2(1)(ω2) · · · SN (1)(ω2)

...
...

...
. . .

...

1 + r S1(1)(ωK) S2(1)(ωK) · · · SN (1)(ωK)



time 0

time 1

time 1

...

time 1

Portfolio strategies A portfolio strategy is identified by the column vector

ϑ, which is composed of the portfolio positions in the N + 1 securities. ϑ0 is

the portfolio position in the riskless security. ϑ1, ϑ2, ..., ϑN are the portfolio

positions in the risky securities. The portfolio positions represent the units

of each security bought, or sold short, at time 0.

Cashflows of investment strategies At time 0, the quantity Vϑ (0) is

the initial cost an investor must face to set up the investment strategy ϑ.

The corresponding initial cashflow received (if positive) or paid (if negative)

by the investor is fϑ (0) = −Vϑ (0). The final proceeds are represented with

a random variable Ṽϑ(1). Vϑ (1) (ωk) is the time-1 cashflow in the state ωk

from liquidating the investment strategy ϑ.

Security returns The (total) returns of the securities are measured at

time 1. They are denoted with RB(1) for the riskless security (j = 0) and
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with the random variables R̃Sj (1) for the risky securities (j = 1, . . . , N):

RB(1) =
B(1)−B(0)

B(0)
= r

R̃Sj (1) =
S̃j(1)− Sj (0)

Sj (0)
for j = 1, ..., N.

Portfolio shares The portfolio share (or portfolio weight) ζj is the fraction

of initial wealth W0 devoted by the strategy ϑ to the security j:

ζ0 =
ϑ0B (0)

W0

ζj =
ϑjSj (0)

W0
for j = 1, ..., N.

Strategy returns The total return of a strategy with portfolio shares ζ

(and portfolio positions ϑ) is denoted with the random variable R̃ζ(1):

R̃ζ(1) =
Ṽϑ(1)− Vϑ (0)

Vϑ (0)
.
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Notations for the Black-Scholes model with discussion

(Section 3)

Timing Investors face a continuum of trading dates. The current date is

t and the next date is t + dt with dt being the infinitesimal length of an

instantaneous period. Time is usually measured in years so that, if T is the

future maturity date of a financial contract (T > t), T − t represents the

number of years to the contract’s expiry.

Riskless security The riskless security (the money account) offers the

interest payment L (t) rdt over the next instant (of length dt) on the amount

L (t) currently invested. Hence, the instantaeous percentage increment in L

is

dL

L
= rdt.

The per-annum rate of instantaneous return on the security is r, which is

assumed to be constant (r is called the riskfree rate). If there is reinvestment

of the instantaneous interest payments up to time T , the terminal value of

the investment is L (T ) = L (t) er(T−t).

Risky underlying stock The risky underlying security is a stock whose

current price is S (S > 0) and whose dividend paid over the next instant is

Sqdt. The per-annum dividend yield is q, which is assumed to be constant. If

there is reinvestment of the instantaneous dividends up to time T , the number

of stocks owned goes from m (t) at the current date to m (T ) = m (t) eq(T−t)
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at the terminal date. It follows that, if we start at time t with e−q(T−t) shares

of the stock and we reinvest the dividends, we end up at time T with exactly

one share.

Under the objective probability measure P , the underlying stock price dy-

namics is

dS

S
= EP

t

[
dS

S

]
+ σdzP ,

where σ is the volatility parameter and
{
zP
}
is a Wiener process under P

(its instantaneous increment dzP is the stock-return innovation). The total

instantaneous expected return on the stock is

EP
t

[
dS

S

]
+ qdt = rdt+ σλρdt,

where σλρdt is the instantaneous risk premium. The parameter λ (λ > 0)

is the market price of risk, which is the compensation required for holding

one unit of systematic risk, and ρdt is the current conditional covariance

between the stock-return innovation dzP and the systematic-risk innovation

dzPλ (dzPλ < 0 makes investors feel unexpectedly worse off). If ρ > 0, the stock

tends to unexpectedly drop in value exactly when investors feel unexpectedly

worse off. Hence, the stock does not provide insurance against systematic

risk and stock investors demand the positive per-annum risk premium σλρ

as compensation.
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In summary, the stock price dynamics is

dS = S (r − q + σλρ) dt+ SσdzP ,

and the level 0 is an absorbing boundary for the stock price process (the

process remains at 0 forever if it starts from there).

Derivative contracts Consider a finite-maturity derivative contract that

provides a terminal non-negative payoff only (there are no intermediate pay-

outs). The payoff is a contractually specified function of the underlying stock

price prevailing at the maturity date T . The current no-arbitrage price of

the derivative contract is the function V (S, t) of the current stock price S

and of the current date t. The function V is assumed to admit the partial

derivatives

∂V

∂t
= Vt︸ ︷︷ ︸

= Θ (THETA)

,
∂V

∂S
= VS︸ ︷︷ ︸

= ∆ (DELTA)

, and
∂2V

∂S2
= VSS︸ ︷︷ ︸

= Γ (GAMMA)

,

which are called the contract’s Greeks. Ito’s Lemma states that

dV = Θdt + ∆dS +
1

2
ΓS2σ2dt.
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Hence, the total instantaneous return on the derivative contract is

dV

V
= EP

t

[
dV

V

]
︷ ︸︸ ︷
expected return

+
∆S

V
σdzP︷ ︸︸ ︷

unexpected return

,

EP
t

[
dV

V

]
=

1

V
EP

t [dV ] =
1

V

(
Θ+∆S (r − q + σλρ) +

1

2
ΓS2σ2

)
dt.

If ρ > 0 and the current ∆ is positive, derivative-contract investors currently

demand a positive risk premium,

EP
t

[
dV

V

]
− rdt =

∆S

V
σλρdt, (1)

as the derivative contract tends to unexpectedly drop in value exactly when

investors feel unexpectedly worse off. By contrast, if ρ > 0 and the current ∆

is negative, investors currently accept a negative risk premium as the contract

does offer insurance against systematic risk. Equation (1) can be rewritten

as the Black-Scholes second-order partial differential equation (PDE):

Θ +∆S (r − q) +
1

2
ΓS2σ2 = V r.

The Black-Scholes PDE is associated with two boundary conditions, which

come from what can be stated about V (S, t) if t → T (payoff condition) and

if S → 0 (absorption-related condition).
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Futures contract The current no-arbitrage futures price is F (S, t). If we

are at the futures contract’s expiry/delivery date (t → T ) and we buy the

contract, our payoff is S − F (S, t → T ). There are no costs in buying (or

selling) the contract so that, by no arbitrage, F (S, t → T ) = S. The futures

contract’s inception date is the initial date 0 (0 < t < T ). The marking-to-

market process makes sure that the current total value of having bought a

futures contract at the initial date is
∫ t
0 e

r(t−u)dF (Su, u), where the time u is

any date running from the initial date to the current date (0 ≤ u ≤ t). The

cost-of-carry pricing formula

F (S, t) = Se(r−q)(T−t)

meets the no-arbitrage PDE

ΘF +∆FS (r − q) +
1

2
ΓFS

2σ2 = 0

and the two conditions

F (S, t → T ) = S and F (S → 0, t) = 0.

Power contract The current no-arbitrage price of the power contract is

W (S, t). Given α ≥ 0,the power contract is a derivative security (with-

out intermediate payouts) characterized by the terminal-payoff condition

W (S, t → T ) = Sα and (for α > 0) by the condition W (S → 0, t) = 0.
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The pricing formula

W (S, t) = Sα e (−r+α(r−q)+ 1
2
α(α−1)σ2) (T−t)

meets the Black-Scholes PDE with the two conditions above specified. The

pricing formula exhibits the discounting effect (−r), the scaled underlying-

drift effect (α (r − q)), and the concavity/convexity effect (12α (α− 1)σ2).

The total instantaneous return on the power contract is

dW

W
= (r + ασλρ) dt︷ ︸︸ ︷

expected return

+ ασdzP︷ ︸︸ ︷
unexpected return

,

which comes from applying equation (1) to Ito’s Lemma for W (S, t) with

∆S
W = α (if the underlying price grows by 1% the power contract price grows

by α% coeteris paribus).

Digital option The current no-arbitrage price of the digital option is

D (S, t). Given the strike price K, the digital option is a derivative security

(without intermediate payouts) characterized by the terminal-payoff condi-

tion D (S, t → T ) = 1{S≥K} and by the condition D (S → 0, t) = 0. Given

n (v) =
1

(2π)
1
2

e−
v2

2 for any real v, N (x) =

∫ x

−∞
n (v) dv for any real x,
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